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INTRODUCTION

The extremely low coefficient of friction of polytetrafluorethylene

(PTFE) makes it an attractive material in the lubrication of any kind of

sliding components. The usually quoted value for IL of 0. 04 is lower than that

for graphite, MoS., or any other known solid [i]. In addition, its low vapor

-25
pressure, 2.5X i0 atm [21, allows it to be used in high-vacuum

applications.

There are, however, several properties of PTFE that limit its

applicability. It is a poor conductor of heat; thus, the excess heat that is

generated under sliding friction is not readily dissipated and, in fact, con-

tributes to the decomposition of the PTFE [3]. It also has a relatively low

compressive strength, 2000 lb/in , which allows the cold flow of PTFE

films so that tolerances are changed. In thin-film applications, the films

are removed to the point that the underlying surfaces are exposed [4].

Composite materials incorporating PTFE have been developed to

eliminate these problems. One composite, which has the trade name DU,

consists of a 0. 010-in.-thick layer of sintered porous bronze (Cu8 9 Sn1 1 ) into

which is impregnated a PTFE-lead mixture (2074 Pb). This PTFE-lead

mixture also forms an overlay up to 0. 001 in. thick [5]. By means of this

technique, the low-friction characteristics of PTFE are combined with the

superior hardness and thermal conductivity of bronze.

The objective in this study was to determine the manner by which the

coefficient of friction of DU is affected by temperature under high vacuum.

*1
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The application of concern here is the sliding friction of DU on black, hard-

anodized aluminum. However, since a film of PTFE would be rapidly trans-

ferred from the DU onto any metal [6], the composition of the underlying metai

would not alter significantly the results (unless it was considerably softer

than the anodized aluminum).
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APPARATUS

The apparatus is shown in Fig. 1. The DU, a 1/8-in. -diamn disc, was

mounted so that it pressed against a hard-anodized aluminum plate. This

geometry was used because it closely corresponds to a specific application

of DU in a particular spacecraft component. The aluminum plate was made

to oscillate back and forth by means of a motor-driven cam located" outside

t.he vacuum chamber. Coupling to the motor was achieved by means of metal

bellows. The oscillatory motion was chosen for several reasons. First, it

corresponded to the start-stop motion involved in the specilic spacecraft

application mentioned above. Second, it eliminated problems in determining

the absolute value of friction force. Third, it allowed the use of a small

aluminum plate, thereby siznpiyIing the measurement and control of tempera-

ture. Fourth, it allowed the measurement of both the static coefficient of

friction and the dynamic coefficient of friction over a range of velocities

during each cycle.

The DU was mounted on the end of a hollow stainless-steel tube, which

was open to the outside air. The diameter of the tube was such that the

pressure difference between the ýnside of the tube, '4. 7 lb/in•, and the outside,

the vacuum of the chamber, caused it to press against the aluminum with a

force of 10 oz. A bellows was provided so that the tube was froe to expand

or contract as required. However, the position of the DU was adjusted with

r a rack and pinion arrangement before pump-down so that the DU disc just

S~-7-
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Fig. 1. Experimental apparatus used to measure coefficient
of friction in vacuum,
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barely touched the alunminunm surface and the subsequent pressure

difference would not cause any signific'%nt distension of the bellows.

The temperature of the aluminum plate was varied through the use of

ct. ;er tubing, whir, %,'-rIed hot or cold fluid. Heating was accomplished

ujy flowing ±C' C w.. through the tubes. Cooling was accomplished by the

use of nitrogen gas that hiad been initially cooled-down by flowing it through

a copper coil immersed in liquid nitrogen. The temperature of the plate was

monitored with a thermistor, which was attached to the side.

The friction force was determined by moans of four resistance strain

gauges. The strain gauges were self-wtmpe rature-compcnsated and were

arranged in a Wheatstone bridge configuration. The strain gauges were

mounted on B3e-Cu beams in such a manner as to measure any displacement

4 of the DU disc in the direction of motion of the plate below. Deflections of

the beams thus were converted directly into a voltage signal proportional to

the frictional force. The circuit was calibrated v~y exerting a known horizottu4

I ~force on the DlU and noting the resulting change in output voltage. The

calibrating force was produced by means of a weight and pulley.

The beam arrangement was originally designed to measure displace-

meats in one direction only. This earlier method was not successful. how..

Iever, because residual strait and electronic drift made it extremely difficult

to determine the voltage that correskponded to the relaxed (xero friction) post-

tion and thus prevented a determination of the absoalute frictioual force. The

oscilleaory into used here elwntnate6 this proownt, snnec it is only aecoli-

sary to measure the peak-to-poak voltage ox- rsions and then to ivid thi

value by two.



A further advantage of the oaciUatory methiod is that a range of

velocities is covered during each cycle. Thus, the coefficient of friction as

a function of velocity can b4. eaoily determined, which applies as wea'I to the

coefficient of friction at zero velocity, i. e..* the static coefficient of friction.

The output voltage of the bridge circui.t with time for a system with a dynuiimic

coefficient of friction that is independent of velocity and a static coeffi%;.*t.-.t of

friction that is greater than the dynamic coefficient is shown in Fig. Z. rh'
higher static coefficient of friction causes the signal voltage to be I-i).her

before slippage occurs. The typical trace for a systern, e.gs., ')U.~ in which

the dynamic coefficient inzxreases with increaaing velocity is s~hwzu in Fig. 3.

A
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Fig. 2. Output of strain-gauge circuit for material with A
velocity-independent coefficient of dynamic
friction and larger coefficient of static friction
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Fig. 3. Output of strain-gauge circuit for material
whose coefficient of friction increases with
velocity
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SAMPLE PREPARATION

•, IThe aluminum plates used in the experiments were given a finish of

8 to 16 rms. They were then hard black-anodized to a depth of 2 mil and

repolished to an 8 rms finish with No. 600 emory paper.

The aluminum plates and the DU test discs were then cleaned in an

ultrasonic bath for 5 min in a solution of i0% acetone in xylene and for 5 min

in pure acetone. They were blown dry with dry nitrogen.

The aluminum plate was subsequently pretreated with DU in the following

manner. A small piece of DU, cleaned as above, was rubbed against the

plate with approximately 15 lb of force for 10 min. The surface was inspected

under a microscope for complete coverage. It was also tested for coverage

.,ith xylene because xylene does not wet DU.

[ T
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THEORY

The adhesion theory of friction predicts that the coefficient of 'IrKction

between two low- surface -energy materials is given by

p

where s and p are the resistance to plastic flow of the weaker of the con-

tacting materials in shear and in compression, respectively [7]1. In the

absence of any phase transitions of either the bulke materials or of the oxides

residing on the surfaces. the coefficient of friction remains constant with

temperature because both s and p exhibit the same temperature-dependence[8].

4 ~PTFE, however, exhibits a phase transition at about 19a C [9).

A study conducted Dn the coefficient uf friction of four plastics in

vacuum [101 revealed that, whereas the ratio sip did not predict the absolute

value for ji very well, it did predict the temperature-dependenc4e fairly well.

The resulhý of that study for PTFE are shown in Figs. 4 and 5. These data

indicate that, for PTFE in the temperature range studied, ji. is givon Appru~xi-

mately by the expression

0. 3 -

where s is the shear strength (in kg/mm ).and p is the static yield pressure

Thr coeffcien affito of DlU is diffe rent from 1PTFE both ubeWin

lowe in ~lueand by luAvilig asrne aite ihtmdauo rto
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Fig. 4. Effect of temperature on friction of PTFE [10]
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.1 range studied. Both of these differences can be explained through use of

eqn. 1. It has been pointed out [(Ii that, if a soft plastic is backed by a hard

material such as a metal, s remains that of the plastic, whereas the hardness

is substantially increased. The result is a significant reduction in the coeffi-

cient of friction from that of the plastic alone. It is reasonable to assume

therefore, that the temperature-dependence of DU could be described by an

equation of the form u/p, where s is the shear strength of the PTFE, and p is

the hardness of the metal (in this case, bronze).

The temperature-dependence of the hardness of bronze and of the shear

strength of PTFE must be known to test thiis theory numerically. It has been

demonstrated [12] that both pure metals and intermetallics exhibit an expo-

nential depes-dence of hardness on temperature of the form

pk exp(-BT)

where k and B are constants, and T is in K. With the Brinell hardnessIvalus of a ty'pical bronze, Cu 0 Sn 4 Zn 0 .51 used.

f p 76. 84 exp(-6. 477 X 10°.4 T)

is obtained. Howover. porous bronze instead of bulk bronze is t'sed in DU,

4 and.although the temperature-dependence should be the same for both. the

absolute hardness should be reduced by an amount related to the porosity of

the bronze. Thus. a iqmtiplicative constant (•} should also be inclutded in this
i • oexpretsidon

7 41 0
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where a is greater than 1. If an exponential dependence for the shear

strength of PTFE is assumed, then, by use of the data of King and Tabor (10],
j

an equation for s can be obtained.

s 53. 09 exp(-O. 01155 T) [3]

Dividing eqn. 3 by eqn. 2 gives the following theoretical expression for the

coefficient of friction of DU4

S

a 0. 69 exp(-O.O01 0 9 2 T) (Cr>) (4]



RESULTS

The data for the coefficient of friction of DU versus temperature on black,
'P

hard-anodized aluminum are shown in Fig. 6. These values correspond to

a sliding speed of 17 mm/sec. These data are from five separate runs made A

j on three different days. The data were recorded during both the heating and

4 cooling cycles without any indication of hysteresis.

The continuous curve on the graph represents the equation

ji1. 33 exp(-O. 01092 T)

This equation was generated from the theoretical expression, eqn. 4, with

a chosen so that ý± 0. 054 at T 20*C. The resultant value for is 1. 93.

0.1

0.09-

0.04

0,031

Cdýu

TEMPERATURE, Cc

Fig 6. Coefficient of friction of DlU verusu totartur-ein vautu!



i ~C ON CLUSIONS

The coefficient of friction of DU doubles as the temperature is lowered

from 60 to -Z0"C. Although DU is a composite material consisting

primarily of PTFE and bronze, the temperature-dependence of its coefficient

of friction is described excellently by the adhesion-theory equation 1A s /p,

where s is the shear strength of PTFE, and p is the hardness of bronze.

Since the hardness of bronze, as given by eqn. 2, varies by only about 5%

over the temperature range studied, it is the variation of the shear strength

of PTTFE that primarily accounts for the change in R with temperature. Also,

the fit implies that the lead used in the PTFE-lead mixture does not play a

significant role in this temperature range.
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